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Abstract

Demand for cheap, easy access to global networks of information is

growing rapidly.  A handheld Web browser is a portable computing device

which allows users to explore the Internet without the need for a PC.  The

Netslate is a prototype of such a device, integrating processing,

communications and a graphical user interface into a portable unit.  A

library of support software demonstrates the capabilities of the device.

Further work is needed to develop operating system and applications

software for the Netslate.
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Chapter 1 - Handheld Computing and the Internet

Introduction

Radio, television, magazines, newspapers and telephony are all migrating to

the Internet, and for very good reasons.  Printed media are by nature

portable, and handheld radios, televisions and especially telephones are now

part of our lives.  People are finding more reasons to need access to more

information in more places.  It is inevitable, then, that handheld access to

the Internet and all of the precious information it offers will soon be in high

demand.

The most prominent feature in any explanation of why the Internet has

experienced such explosive growth in recent times has to be the advent of

the World Wide Web.  Without warning, the Internet transformed from a

notoriously complicated hangout for computer nerds and scientists, into a

point-and-click source of information on absolutely everything.

Emerging technologies in multimedia, portable computing and

internetworking point to an exciting future for computer systems

engineering.  There is great competition to build systems that allow non-

expert users to access Internet content conveniently and cheaply.  This

project aims to develop a working prototype of a handheld Web browser, a

portable device that connects people to the Internet.

The Netslate is an entry in the race to build a portable computing and

communications tool for the masses.  It can be compared to the Network

Computer concept, which promises to bring the Web into our living rooms

and offices for $500 a piece.  It also has links with currently available

Personal Digital Assistant products, which primarily function as digital

diaries but are now clambering to provide all the attractions of handheld

Internet connectivity.
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     (a)        (b)

Fig. 1 - The Netslate prototype hardware: (a) external; (b) internal.

Project Goals and Results

There are two goals discussed in this thesis document.  The first is a long

term goal of a handheld Web browser product that is fully supported with

operating system and application software, ready for production.  The more

immediate goal of the Netslate project is to build prototype hardware and

develop low level software that can support this greater goal, to provide a

starting point and direction for further development.  Hence the motivations

for the design decisions in this project come from a goal more distant than

the demonstration day at the end of the project.

The tangible results of this project are:

• the Netslate prototype hardware packaged in a moulded case with

display, communications interface etc, pictured in figure 1;

• the nslib  development library of low level functions to drive the

Netslate hardware, with a number of demonstration programs;

• this report, providing direction for further development of the Netslate.
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Overview of this Report

The remainder of this chapter examines the nature of interactive computing

and arrives at the requirements of the Netslate prototype.  Chapter 2

examines current products and projects in the field of handheld computing

devices, and looks at software and hardware technologies which may form

the basis of new generations of these systems.

Chapter 3 details the development of the Netslate prototype hardware,

examining the design decisions and features of the prototype at each stage.

Chapter 4 describes the software development and testing of the Netslate

prototype, including an overview of the nslib  library and the GNU

development environment.

Chapter 5 discusses future developments of software and hardware towards

the long term goal of the Netslate, and beyond to examine the directions in

which this field of technology may evolve.

Computing and its Costs

There are three central activities involved in computing: the processing,

storage and communication of information.  All computer systems exhibit

each of these to some degree.  The evolution of computing revolves around

reducing every kind of cost associated with these activities.

The three fundamental costs of computing are time, space and energy. We

want to make our computer systems as fast, as small and as power efficient

as possible.  This results in cheap, convenient, useful devices with value to

people.

It is often possible to make tradeoffs between the different costs, such as

choosing to build a faster computer which consumes more power. But real

advancements in technology allow us to reduce all of the costs without a

tradeoff.  Using transistors instead of valves, reducing the minimum feature
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size of a silicon manufacturing process, advancing from CISC to RISC

architectures, these are all ways that we have managed to make faster

computers in smaller packages which consume less power and cost less.

Personal vs Embedded vs Ubiquitous Computing

Personal computers are currently the most obvious computer systems in our

day-to-day experience.  A PC occupies a space on a desk which you sit at to

use the computer.  General purpose user input and display devices perform

the same functions regardless of whether you are writing a thesis report or

battling aliens from Mars.

The PC market is wildly performance driven as new and more bloated

versions of programs and operating systems demand more grunt from the

hardware to do the same jobs.  While the time cost of personal computing

has improved by orders of magnitude (if somewhat offset by inefficient

software), the space and energy costs have barely changed at all.  A PC still

comes in the same size box with the same size power supply it did fifteen

years ago, and the price tag has not changed significantly in that time.

Embedded computer systems, while less conspicuous than desktop PCs, are

certainly recognisable as individual devices.  CD players, VCRs, modern

microwave ovens and air conditioners, mobile phones, these are all

examples of appliances incorporating embedded computers.  The computing

power embedded in the system allows the user more flexible and interactive

control over the appliance.

There are still more examples which fall into the category of embedded

control systems, such as vehicle engine management computers. These

systems differ in that they are not interactive, that is the user does not have a

dialogue with them.  They are buried deep within some piece of equipment

to make it behave more intelligently.  These non-interactive embedded
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devices are less relevant to our discussion because they lack this direct

interaction with humans.

The market for embedded systems is often driven by physical size.

Measures of integer performance are fairly irrelevant when purchasing a

mobile phone, assuming that the response time for searching the stored

phone numbers is unnoticeable.  Embedded systems have well defined

tasks, eliminating the need to upgrade the processor in your mobile to the

fastest one on the market.  While total power consumption of many battery

operated products in which embedded systems appear is certainly important,

the power drawn by the CPU is often a negligible component of that total.

The lion's share of current consumed by a mobile phone is that used to

power the transceiver.

Ubiquitous computing is most conspicuous by its absence. If, as some

advocates suggest, ubiquitous computing devices will be so small that you

won't even notice them, it is tempting to wonder how we will ever know

when they have arrived.  Taken more literally, ubiquitous computing means

devices which are not noticed simply because they are absolutely

everywhere.

While a world where every surface in a room is smeared in computing

power may seem a little hard to imagine right now, the potential benefits of

this availability of computing are enormous.  When computers come by the

billion, floating in tins of paint to be sprayed onto any object you care to

make more intelligent or interactive, the information revolution will surely

be over.  The purpose of presenting this idea here is to convince the reader

that there is a point to making computers smaller.
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Figure 2 depicts the spectrum of the assimilation of computing into our

lives.  At the left is the typical desktop PC, which demands the user to adapt

to it.  On the right is ubiquitous computing, with its promise of an

omnipresent intelligent environment.  In the middle is embedded

computing, which adds interactivity to special purpose devices.

The Netslate is aimed somewhere left of centre on this spectrum, within the

range of embedded systems but leaning towards more general purpose

computing.  Its single purpose is to connect people to the Internet, but this

still allows a certain latitude in the nature of the applications software that it

will run.  It is a handheld device, not a wearable object that might place the

project further towards the ubiquitous end of the scale.

User Interaction

The Netslate is not intended to be perfectly suited to every possible kind of

interaction with the Internet.  Rather it is designed to fulfil the basic needs

of Internet access for the masses.  An average user spends much more time

looking for information on the Web  than adding to it.

This leads to the first major difference between the Netslate and the PCs on

which we currently run Web browsers - the lack of a keyboard. The

requirement for text entry on the Netslate is limited to pages which require

search keywords or form fill-ins.  We examine some ways of performing

these tasks without a keyboard in the final chapter.

Fig. 2 - The spectrum of computing assimilation.
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User input on the Netslate is by some pointing mechanism.  For the

prototype built in this project, the input device is a trackball.  A more

natural method of input might be a touch screen or pen input.

The display device on the Netslate prototype is a colour LCD panel similar

to those in laptop computers.  Colour flat panel displays are continually

improving in cost and performance, and present a much more attractive

graphical rendering of Web pages than do cheaper monochrome displays.

LCD panels have slower response times than CRT type monitors thus

blurring animations on laptop Pcs, but this is less of a problem for a Web

browser where viewing Web pages is the primary task.

Hardware Requirements

As we have discussed, the basic functional requirement of the Netslate is to

support a Web browser application comparable to those running on PCs

today, with minimum cost.  Because the Netslate does not need to be

capable of running all of the various kinds of applications that run on a PC,

we can eliminate a number of expensive components.

Hard disk storage is not required by the Netslate design.  Because the

Netslate is only used while connected to the network, any extra software

that is not stored in ROM can be downloaded as it is needed.  The user does

not need to use the Netslate to store documents or save copies of Web

pages, or install various applications.  All permanent storage is elsewhere on

the network.  Floppy disk drives are unnecessary for similar reasons.

In the spirit of all embedded devices, performance upgrades are

unnecessary.  Once the system is capable of performing its particular tasks

satisfactorily, there is no point in upgrading the CPU or memory to make

the system faster.  As the Web takes on more intensive multimedia content

requiring faster processing, old systems will become out of date and be
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replaced by newer more capable ones.  The cost of replacing a device is far

less significant than that of a PC.  Eliminating general purpose expansion

buses, CPU and memory sockets and the like from the design, we further

lower the cost and size of the Netslate.

Because the Netslate is a handheld device, it must be powered by batteries

within the unit.  The simpler we can make the electronics, the longer the

batteries will last on a single charge.  Battery technology improves at a far

slower rate than computing, so low power consumption is important.

Keeping power dissipation from the board as low as possible also removes

the need for a cooling fan.  This further reduces the size of the product and

eliminates the annoying noise that emanates from laptop computers and

PCs.

Networking and Communications

Obviously a portable device that draws on information from the Internet

will need some wireless means of connection to the global network.

Building a fast reliable wireless digital communications network is a

sufficiently involved topic to make up a whole separate thesis, and this is

indeed another rapidly advancing field of research.  Accordingly, for the

purposes of the Netslate project the question of how the device connects to

the Internet is considered someone else's problem.

The prototype Netslate hardware implements a high speed serial port which

is sufficient for development and demonstration purposes.  In the final

chapter some practical wireless solutions and the directions in which they

are evolving are discussed.

Regardless of the exact nature of the communications medium used, a

product which connects to the Web will need to speak the language of the

Internet.  Of course this implies implementing a TCP/IP protocol stack, a

matter which is also discussed in the final chapter.  The need for this
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protocol support does not have any direct impact on the hardware design of

the system.

Summary

We have looked at the motivation behind building a handheld Web browser,

and discussed the basic design requirements of such a device. By narrowing

the range of applications run by personal computers down to those which

are central to benefiting from the Internet, we have reached an outline of a

simpler, lower cost product which will appeal to the masses.

The aim of the Netslate is to integrate a point-and-click graphical interface

with sufficient processing and communications capability into a portable

unit.  The Netslate concept takes on the role of Web browser programs

running on PCs today, in a device that is closer to a special purpose

embedded system than a PC.

The next chapter compares the Netslate concept to a number of other

products and projects in handheld computing, and examines some currently

available technologies that are competing for application in this field.
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Chapter 2 - Handheld Devices and Technologies

The Netslate concept described in the first chapter shares some common

ground with a number of existing products and projects.  In this chapter we

survey some prominent handheld computing developments, and the

technologies which drive them.

Apple Newton PDA

The Apple Newton [1] is almost certainly the

most prominent of Personal Digital Assistant

(PDA) products in recent times.  The

Newton, shown in figure 3, is roughly

200mm x 100mm x 30mm in size with a

monochrome touch sensitive LCD screen.

In contrast to the Netslate, its central purpose

is to store information.

PDAs evolved out of the huge range of

electronic organisers and diaries that have

flooded the market for years.  These devices all use battery backed static

memories to retain personal information belonging to the user.  This

information is typically divided into phone and address details, calendar,

schedules, memos and reminders etc.  Like a paper diary, the only

information you get out is the information you put in.

The designers of the Newton wanted to do something fundamentally new

with the way we organise our personal information.  They conducted

experiments in which subjects were given featureless rectangular objects

and asked what they would like those objects to be able to do for them if

they were computing devices.  A large number of the subjects began

Fig. 3 - The Apple Newton

MessagePad PDA.
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scribbling on these blank objects, writing information like notes and

reminders.

The fact that the subjects in these experiments had a tendency to add

information to a featureless "computing" object is hardly surprising. Word

processing and diary management are two of the familiar functions that we

have come to expect from our computers and electronic organisers. The

author is willing to bet that not too many of the subjects saw these blank

rectangles as windows onto diverse sources of information from around the

globe, which they could browse at leisure.

With this research data in hand, the designers went on to build a device that

could accomplish old tasks with new technology.  The Newton was

successful in pushing advances in handwriting recognition software and the

development of the ARM610 CPU (which is discussed later in this chapter).

While successful as a product, the Newton did not bring about a global

revolution in the way people store reminders and memos.

To its credit, the original Newton did recognise that electronic

communications would become an important component of portable

computing.  Unfortunately even todays Newtons without expansion

hardware have a maximum communications radius of one metre.  This is

fine for swapping digital business cards, if you can find someone else with a

Newton to put yours next to.

Of course the Newton range has evolved somewhat since its first release.

The new Newton operating system (Newton 2.0) supports networking

applications with a TCP/IP protocol stack, allowing it to run a basic Web

browser and email interface.  The display limitations of the Newton

platform limit the Web browser to static pages with four-greyscale graphics

at low resolution.
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The Apple Newton is still marketed with organiser functions first and

communications second on the feature list.  It will be interesting to see if the

Newton product experiences an inversion of these priorities in future

versions.

Motorola Marco and Envoy Communicators

Motorola manufactures two interesting products

that have a lot in common with the Apple

Newton.  In fact one of them, the Marco [2]

shown in figure 4, is based on the Newton

platform.  The other, the Envoy [3] in figure 5, is

Motorola's own architecture running the Magic

Cap operating system.  Both have touch

sensitive screens, handwriting recognition

software and a limited amount of static memory.

What sets these two apart from the Newton

is that they each have integrated cellular

radio modems.  This means that they can

connect to an Internet Service Provider

without extra hardware.  As would be

expected, the communications features of

these two PDAs receive top billing over

diary functions on the feature list.

The Marco runs all of the software available for the Newton, and the Envoy

runs a similar range of software for the Magic Cap platform.  Both run

versions of the Web browser and email applications for the Newton

mentioned above.  While the bandwidth and availability of current cellular

services are less than ideal for regular Web browsing sessions, these

products seem to be ahead of the Newton in that Motorola has made

communications the priority.

Fig. 4 - The Motorola

Marco.

Fig. 5 - The Motorola Envoy.
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Xerox ParcTab

The ParcTab [4] is part of an ongoing project at Xerox's Palo Alto Research

Centre (PARC).  The ParcTab mobile hardware shown in figure 6, or Tab

for short, is a palm-sized device with a touch sensitive monochrome display

and an InfraRed transceiver, run by an 8051-family microcontroller.  The

project is an experiment exploring concepts in ubiquitous computing.

A number of Tabs have been

manufactured and distributed

to employees in the research

centre.  The workers can use

the devices anywhere within

the IR communications cells

around the centre to organise

collaborations and

communicate with electronic

mail messages.

Of course the Tab is far too small to function as a useful Web browser.

Users need to scroll the display back and forth just to read their email.  But

the project has shown that even a device of this simplicity and small size

can be useful if equipped with networked communications capability.

Berkeley InfoPad

The InfoPad project [5] at the University of California at Berkeley is

another project aimed at providing ubiquitous information access. While the

InfoPad hardware bears some similarity to the handheld devices we have

already discussed, the most interesting feature of the project is the way the

computing for the terminal is distributed.

The InfoPad terminal hardware, shown in figure 7, is based on an ARM610,

ASIC parts, a monochrome touch screen and a radio modem. It also

Fig. 6 - The Xerox ParcTab.
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contains sound generation and sampling hardware.  The design basically

implements a general purpose multimedia terminal which is capable of

displaying text, graphics and compressed video, playing and sampling

audio, and capturing pen input.

The processing capability of the portable terminal is used exclusively to

control the communications link and coordinate the display and audio

output, and the audio and pen input to and from the terminal.  The terminal

does not participate in executing any of the applications it displays, as these

are all running on other machines on the network.

In fact the applications are all

standard or modified X windows

programs for Unix workstations.

Apart from the servers running

the applications, intermediaries

between these hosts and the

terminal are needed to make the

mobile multimedia terminal

appear as a fixed X windows

terminal to the applications.

The result of this approach is that the only data which passes over the radio

link is graphics, video, audio and pen data.  These kinds of data are error

resistant, so errors in the data streams only cause glitches in the display or

sound.  In effect the InfoPad system is a portable wireless X windows

terminal which depends entirely on fast server machines on the network.

While the InfoPad introduces some novel techniques which have been

successful in making the terminal useable over an error prone link, this

approach does have some disadvantages.  The first and most obvious is the

total reliance on expensive servers for every application and every moment

of interaction with the terminal.

Fig. 7 - The Berkeley InfoPad.



15

The justification for moving all of the computing onto the network is to

reduce power consumption on the terminal and to free the applications from

the terminal's performance limitations.  However as the (time, space and

energy) costs of computing continue to fall, this tradeoff may turn out to be

inappropriate.

One of the problems with the InfoPad design is the latency of response from

pen input to digital ink appearing on the display.  This is due to the large

number of layers between the input device up to the application on the

network and then back down to the display device.

Large amounts of computing power and fast network connections have been

thrown at this problem to make the response latency less noticeable.  While

this works between rooms at Berkeley, it will not work across cities or

countries when the server is more distant on a larger network.  End users of

cheap terminals can not afford the expensive server for the next room to

keep latency low.

The lesson here is to keep the mechanisms for user feedback in interactive

systems close to the user.  Making the handheld device a terminal for

applications running elsewhere on the network violates the principle.  It also

greatly increases the amount of computing required to achieve the same

task, by placing too many layers of computation between the user and the

application.

A final doubtful point is whether the X windows system will ever really be

suitable for the general population to use for running Web browsers and the

like.  The cost of running networks of X workstations (wireless or

otherwise) and the complexity of administrating Unix hosts to run

applications for them is certainly prohibitive for now.
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The Network Computer

It is clear from examining each of the above systems that good software

design is at least as important to the success of a product or project as good

hardware.  We now diverge temporarily from our discussion of handheld

hardware issues to examine a new reference standard for consumer

computing called the Network Computer or NC [6].

The NC is not a product from a particular manufacturer.  Rather, it is a

hardware and software reference design that will be licensed and

implemented by various manufacturers.  The reference design is owned and

licensed by Oracle, the world's second largest software company.  At the

time of writing, no commercially available NC implementations have yet

been released.

The central theme of the NC concept is to simplify computing to make it

available to everyone.  The complexity of the PC is the barrier making it too

daunting and too expensive for many.  The NC, while not specifically for

handheld devices, is a design that lends itself to providing a suitably simple

and accessible operating environment for a handheld Web browser.

As implied by the name, the network is a fundamental part of the NC

architecture.  The NC loads its system and application software from the

network as it boots up, eliminating the need for users to periodically

upgrade or maintain the software on their system. This also requires no local

hard disk storage.

The NC operating environment is centred around the Web browser.

Working from the assumption that browsing Web pages is a task simple

enough for anyone, this becomes the mechanism by which the user

navigates the system to find applications, tools, network files, help

documents etc.
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The hardware required to support the reference NC design is very similar to

the prototype hardware of the Netslate project.  The NC is not specifically a

handheld product, but rather a range of products working within the same

operating environment.  A commercial implementation of a handheld NC is

almost inevitable.

Java

Applications for the NC are written in Java [7], a platform independent

language from Sun Labs which is designed for distributing programs across

the Internet.  Java is already used to build interactive Web pages.  The Java

programs embedded in these pages are interpreted or compiled by the Web

browser software on the client's machine.

Maintaining applications and tools as links to Java programs on the Web

further simplifies the user's task, as upgrading and maintaining these add-on

applications also becomes unnecessary.  This will mean that writers of Java

applications will have to carefully consider the effects of changing their

programs.  Upgrades to applications will have to be made in smooth and

logical steps.  The provision of software may transform from a product

market to a service market.

There is a certain amount of performance overhead incurred by running

interpreted Java programs.  This slowdown can be reduced by compiling

modules of applications to the machine's native executable code as required,

using a technique called Just In Time (JIT) compilation.

The ARM Processor Architecture

The processor used in the first implementations of the NC design was the

ARM7500 [8], the same part as used in the Netslate prototype. The ARM

architecture [9] is a novel range of low cost CPUs designed by Advanced

RISC Machines in the UK.  The specifics of the ARM7500 are discussed in

the following chapter.
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The very first ARM parts, the ARM2 and ARM3, were the basis of the first

Acorn computers.  Advanced RISC Machines was spun off from Acorn

with the help of Apple Computer, to develop the ARM610 for use in the

Newton.  The ARM7100 and ARM7500 are aimed at PDA and multimedia

devices.  Digital Semiconductor licensed the rights to customise the ARM

core architecture, and have recently gone into production of the

StrongARM.

The StrongARM range is fabricated on the same process as Digital's Alpha

series of very high performance 64-bit processors.  While the core of the

ARM7500 is capable of 40MHz clock rates, the StrongARM extends up to

clock rates of 235MHz.  This is in addition to other architectural

enhancements.  Even while delivering around 260 MIPS (Dhrystone 2.1) of

performance, the StrongARM typically dissipates less than one Watt.

For their high performance, low cost and low power requirements, the

StrongARM parts are likely contenders for future portable Internet products

and NC implementations.

Summary

Computing has been evolving from standalone computation to networked

interaction.  Products originally designed to function as diaries are working

towards accessing the Internet.  Even small simple devices can be useful if

they are a means of communication across a network.

Keeping the user feedback tightly coupled to the user input improves

interaction, and this implies some amount of processing on the terminal.

Simplicity of software is the key to networked computing for the general

population, and simplicity of hardware is the key to making this computing

portable.  Successful  portable devices integrate a necessary level of

computing performance with communications and user interfaces

appropriate to the application.
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In the next chapters we delve into the hardware and software development

of the Netslate prototype, a project which aims to apply some of these

principles.
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Chapter 3 - Hardware Development

We have discussed our motivation for building the Netslate, and examined

some relevant products and technologies in the field.  Now we turn to the

actual implementation of the

prototype Netslate.  This chapter

deals with the hardware design

and construction, and the

following chapter examines the

software development and

testing.

Figure 8 shows the block

diagram of the completed

Netslate prototype hardware.

Each block is described in the following sections.

The ARM7500 CPU

The ARM processor architecture has already been mentioned in the

preceding chapter as a prominent component in several handheld computing

products. The distinguishing features of ARM processors are good

performance, low power dissipation, small size, high integration and low

cost.  All of these features are attractive to designers of consumer and

embedded products.

The ARM7500 is the CPU chosen for the Netslate.  It consists of a cached

32-bit RISC core, a video and sound macrocell, and extensive memory and

I/O support.  It is this combination of many of the major components

needed by the Netslate that makes it ideally suited for this project.

Fig. 8 - The Netslate hardware block

diagram.
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Integer performance of the ARM7500 is roughly equivalent to a 66MHz

Intel 486, while dissipating less than one Watt.  The efficient design of the

CPU core keeps the transistor count low, making for a small, low cost part.

The low power consumption also means that a cheap surface mount

package is sufficient, without the need for a heatsink or cooling fan.

Perhaps the most novel feature of the ARM7500 is the video and sound

macrocell.  This provides analog and digital video and sound outputs which

may directly drive a CRT display and audio amplifier respectively.

Dedicated DMA channels are used to refresh the display and play sound

samples directly from main memory.  External logic can be added to drive

LCD panels and CD quality audio DACs.

Other very useful I/O modules within the ARM7500 include ports for PS/2

style mouse and keyboard, four analog inputs for resistive devices such as

joysticks, PCMCIA bus support, flexible I/O cycle timings and a number of

internally decoded address spaces with chip select lines.  Also included is a

multiplexed row/column address bus for direct DRAM interfacing.

The ARM7500 also includes sophisticated clocking and reset control. It is

possible to power down the crystal oscillator module and halt the CPU with

only static currents being drawn.  A number of event sources can then bring

the CPU back up cleanly after a delay while the clock stabilises.  An

intermediate suspend mode allows the clock to the CPU core to be gated off

until and interrupt event occurs.  This is performed as a single write to a

memory-mapped register, which makes it possible to suspend clocking until

the next context switch from within an idle task.  DMA transfers continue

while in suspend mode, so display refresh and sound playback are

unaffected.
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The Netslate Development Board

From the beginning of the project, it was clear that a flexible way of

prototyping the Netslate hardware would be needed.  The ARM7500 comes

in a 240 pin surface mount quad flat pack and runs at a clock frequency of

32MHz.  Obviously conventional socketing and breadboarding techniques

were out of the question.

A two layer PCB with etched tracks for all buses and connections was ruled

out as being too inflexible and prone to layout mistakes.  It was also

impossible for a two layer board to support the density of routing required

and still provide sufficient power and ground distribution traces.  Ideally in

a production environment multilayer boards with layers dedicated to power

and ground planes would be used to provide a low resistance noise immune

power supply.  However for the Netslate prototype multilayer PCBs were

ruled out as too inflexible and too expensive.

It would have been possible to build the board using wirewrap techniques

by printing a PCB which brought all 240 surface mount pins out to 100 mil

spaced wirewrap pins.  Wirewrap boards are capable of operating at the

frequencies required, however a significant amount of board space would be

required just for the wirewrap pins, and the protrusion of these pins from the

underside of the board would have significantly increased the bulkiness of

the Netslate prototype when packaged with the display.

The prototyping technique developed for the Netslate was a hybrid of the

above techniques.  A two layer PCB was designed with pads for the

ARM7500 brought out on short fine traces to small vias, allowing access to

all pins on both sides of the board without consuming much board space.

Pads for all the anticipated components and connectors as well as some

grids of extra pads were laid out on the board.  All unused area was filled

with power and ground planes on top and bottom respectively.



23

Insulated single strand wire of the same kind used for wirewrapping was

soldered point-to-point directly to the pads and vias to build up the buses

and connections required.  This allowed a degree of flexibility when

connections needed to be altered, and allowed the design to start simple and

build up in an incremental fashion.  With the wiring running flat against the

ground plane the board created an electrically quiet environment without the

space overhead of wirewrap pins.

As well as the ARM7500 CPU, provisions were made on the board for

ROMs, a 72-pin SIMM, an EPLD, a serial port with transceiver, and

connectors for RS232, VGA and PS/2 ports.

Memory

The ARM7500 includes interfacing logic for 16-bit and 32-bit ROMs.  A

16-bit ROM configuration using two 27512 8-bit 512kbit ROMs was

chosen, as this was readily emulated using the ROM emulators available.

As will be described in the next chapter, all Netslate programs copy

themselves into DRAM before executing, so the bandwidth limitation of

using half-word fetches is not a problem.

This configuration gives a total program space of 128Kbytes, which was

ample for all of the code developed throughout the project.  If later projects

using the Netslate hardware run out of program space, the author

recommends either compressing the ROM images and running a self-

extracting utility on start-up, or booting over the serial link. The latter is the

technique used by commercially available development boards with debug

monitors in ROM.

The ROM emulator modules used have access times of around 100ns, and

typical EPROMs of up to 200ns.  With a 32MHz memory clock this equates

to at least six cycles for each ROM access to be safe.  A stupid coding error

early in the project set the ARM7500's ROM timing register for two cycles
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per access, causing all sorts of problems.  The ARM7500 resets into 14

cycle ROM timing, and the nslib  code (described in the next chapter)

leaves it that way.

DRAM interfacing is often a problematic area in microprocessor projects,

due to the complexity introduced by row/column address multiplexing and

cyclic memory refresh requirements.  However interfacing the ARM7500 to

a 32-bit DRAM module is simply a matter of connecting address, data and

RAS/CAS strobe lines, as all of the necessary DRAM interface logic is

internal.  DRAM refresh continues during and after reset, so no internal

registers need be altered on boot up in order to use the DRAM.

A low profile 72-pin SIMM socket is included on the Netslate board, which

has been tested with 4 and 8 Mbyte SIMMs. As some SIMM modules are

fairly current thirsty and noisy on the supply rails, sufficient decoupling

capacitors are required around the SIMM socket.  A number of electrolytics

and multilayer ceramics have been used around the board for decoupling

across the power and ground planes.

Video Display

As mentioned earlier, the ARM7500 provides analog and digital video

outputs, fed from dedicated DMA channels.  One channel fetches data for

the display, while the other fetches data for a hardware cursor mask.  (On

the Netslate the latter is used to produce a mouse pointer without altering

the display buffer.)  Both streams of data are serialised and passed through

palette lookup tables.  The display gets a 256 entry palette while the cursor

has a three entry palette.  A fourth value in the cursor masks is transparent

to the display data beneath it, allowing a shaped cursor.

The Netslate board includes a variable frequency clock source for flexible

driving of a number of different types of CRT and LCD displays.  This

clock source determines the frequency at which pixels are driven out to the
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display device.  Registers within the video subsystem are programmed with

values representing the dimensions of the display and border in pixel units.

The clock source is a Voltage Controlled Oscillator (VCO) which is coupled

to the ARM7500's internal phase comparator, completing a phase locked

loop or PLL.  This circuit is able to generate many frequencies from DC to

over 90MHz by changing the divisors in the phase comparator.  The design

of the VCO is similar to that described in Appendix E of the ARM7500

Data Sheets [8].

VGA Monitor Interface

No extra external circuitry is needed to drive a VGA monitor.  The VGA

connector on the Netslate board was first fed directly from the ROUT (red),

GOUT (green), BOUT (blue), HSYNC and VSYNC outputs of the

ARM7500.  Later the HSYNC and VSYNC lines were buffered to prevent

reflected pulses from the VGA lead from disturbing the LCD driving logic.

The VGA interface has been tested at resolutions of 320x240 and 640x480

at 8-bits per pixel (256 colours).

The VGA display port is useful for debugging purposes and would also be

handy in a finished product for driving external displays for presentations

etc, but in order to be a self-contained computing device it requires some

form of compact integrated graphical display.  Two different Liquid Crystal

Display (LCD) panels were interfaced to the ARM7500 on the Netslate

board.

Monochrome LCD Interface

The first LCD panel to be driven successfully by the Netslate board was the

Hitachi LM215XB.  This panel is a monochrome type with 480x128 pixel

resolution and no onboard controller.  Its physical dimensions and long

aspect ratio make it unsuitable for permanent use in the Netslate prototype,

but it uses a somewhat similar interface to the colour LCD to be described

next, and provided a good starting point.
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The LM215XB has a 12-pin connector carrying: power and ground; four

data bits; pixel, raster and frame clocks; an AC driving signal; and contrast

and bias supplies.  The bias supply for this panel is nominally -13.5V at

around 3mA.  The four data lines each correspond to one quarter of the

display panel, which is divided into four subpanels each 240x64 pixels.

Each pixel of an LCD panel may only be driven on or off for each frame, so

greyscaling consists of modulating each pixel value over many frames to

produce an averaged duty cycle.  Due to the slow response time of the

human eye this is seen as a grey level, although some flicker may be visible.

The ARM7500 employs patented LCD greyscaling logic which modulates

each pixel value with its grey level, position and frame number so that

neighbouring pixels do not flash on and off together, minimising the visible

flicker.

The ARM7500 provides 16 grey levels from four bits per pixel.  Four pixels

(i.e. 16 bits of data) are greyscaled in parallel and driven out of the four bit

LCD data port, along with the ECLK clock signal.  To drive the LM215XB

each data bit drives one quarter of the panel, requiring each sequence of 16

bits in the display buffer in memory to consist of four bits for each

subpanel.  The ECLK drives the LCD pixel clock CL2, HSYNC pulses the

LCD raster clock CL1 at the start of each line, and VSYNC pulses the LCD

frame clock FLM at the start of each frame.

LCD pixels consist of crystals which twist when a voltage is applied. The

magnitude of twist determines the brightness of the pixel, regardless of the

direction of the twist.  If DC is applied, the crystal continues to twist until it

is damaged.

A requirement of all LCD panels is that no DC voltage is applied to any

pixel.  To ensure this, both panels described here require an AC driving

signal called M, which alternates with each frame.  The M signal is used to
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alternate the polarity of the applied voltage and hence the direction of twist

with each frame, so that on average no DC bias is applied.  To generate the

M signal, a T (toggle) flip-flop in the EPLD is clocked by the VSYNC

pulses.  This maintains the duty cycle of the M signal at 50% as long as the

VSYNC pulse occurs regularly.

Colour LCD Interface

While the monochrome LCD panel was useful in testing the LCD driving

capabilities of the ARM and verifying the clocking circuitry, the Hitachi

display was never intended to become part of the Netslate prototype.  A

passive colour LCD panel from Sanyo, the LCM-5330-22NSK, was the

display finally packaged with the Netslate.  This panel is of the type used in

colour laptop computers.  While it does not provide the same quality of

colour reproduction as more recent active matrix displays, it is a lower cost

part and is sufficient for prototyping.

The Sanyo display requires a +38V bias voltage for the panel.  It also

contains two Cold Cathode Fluorescent Lamp (CCFL) backlight tubes, each

of which requires 1200VAC to strike the lamp and 400VAC under normal

loads.  Each tube consumes around 3W.  These high voltages can be

produced using switch mode inverters [10], supplied by ordinary batteries.

At the time of writing, the Netslate lacks the power supply circuitry needed

to drive the fluorescent backlights in the display.  While under bright light it

is possible to make out lines and shapes on the display, it has been

impossible to characterise the quality of the colour reproduction.

Unfortunately a black against dark black display does not make for a good

demonstration of the Netslate, so the prototype was demonstrated running

an external VGA monitor.

The digital video output of the ARM7500 may be configured either for 4-bit

greyscaled LCD data as used above, or 8-bit raw data.  The ARM7500
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datasheets suggest that the 8-bit raw mode is suitable for driving colour

LCD panels, however this would require external greyscaling logic to

achieve more than 3-bit colour.

A design was developed and implemented in the Netslate's EPLD which

adapts the 4-bit monochrome LCD output port to the colour Sanyo panel's

input port, which is 16 data bits wide.  By running the ARM7500 in 4-bit

greyscale mode and converting groups of three pixels to red-green-blue

pixel triads for the panel, 12-bit colour is produced.

ARM Ltd of the UK has requested an application note detailing the

interfacing of the ARM7500 to the Sanyo LCM-5330-22NSK.  Appendix A

gives details of the logic contained in the EPLD which performs this task.

The application note will not be finalised until backlight supplies are ready

and the colour reproduction is tested.

Mouse Interface

The ARM7500 provides two PS/2 style serial interfaces, one for mouse and

one for keyboard.  Each generates its own interrupts on receive and transmit

of complete bytes.  The Netslate board brings out the mouse data and clock

lines to a PS/2 style connector which is currently used for an external

trackball.  When the trackball is eventually integrated in the Netslate casing,

this connection will become internal and the socket will be free for an

external PS/2 or AT style keyboard.

Serial Port Interface

The Netslate board incorporates a fairly standard RS232 transceiver and

UART combination for serial communications.  The UART is a Texas

Instruments 16C550 and the transceiver is a Maxim MAX203 level

converter with internal charge pumps.  The 16C550 is pin and function

compatible with the National Semiconductor 16550 employed in PCs, but is

fabricated in CMOS reducing the power consumption considerably.
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The UART is clocked from the 8MHz reference clock output from the

ARM7500, which allows rates up to 38,400 baud to be produced accurately

using the UART's internal frequency divider.  If higher baud rates are

required, the UART could be clocked from an external 1.8432MHz crystal

oscillator.

The serial port implements the RTS and CTS lines for hardware flow

control.  The DTR, DSR and CD lines are looped back in similar fashion to

a null modem connection, as the MAX203 does not provide sufficient level

converters to implement these signals.  The nslib  library described in the

next chapter includes interrupt driven RTS/CTS handshaking which has

been tested up to 38,400 baud.

The ARM7500 provides two different levels of interrupt service, IRQ and

FIQ.  IRQ interrupts are used for most interrupt sources, and FIQ interrupts

are used to service "fast" interrupts.  When servicing FIQs, the CPU

switches in a banked set of registers.  This can reduce or eliminate the need

to save registers on a stack before servicing the interrupt.

The UART's interrupt output is connected to both the INT2 and INT5

interrupt inputs on the ARM7500.  This means it is able to cause both IRQ

and FIQ interrupts, so it will not be necessary to change wiring if UART

interrupts need to be upgraded from IRQ to FIQ level.

Power Supply

Power consumption of the Netslate board was measured under various

operating conditions, and was found to be around 300 to 400mA at 5V, ie

1.5 to 2.0 Watts.  Consumption is affected most by the amount of DRAM

activity and whether or not a display is being driven.

The board is supplied by a 7805 5V regulator, which also dissipates some

amount of power depending on its input voltage.  More sophisticated
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techniques are available which employ switch mode DC-DC converters [10]

to boost or drop the supply to the required voltage at high efficiencies.

These are able to cope with changes in supply voltage as the battery pack

discharges to give as much operating time as possible.

Other techniques to save battery power usually involve powering down

various parts of the system when they are not being used.  It is an advantage

to be able to power down the backlight of the display panel, as this is one of

the more power hungry components of many systems.

Moulded Casing

The Netslate board and the colour LCD panel are housed in a moulded PVC

plastic case, which was produced especially for the project.  The case is

300mm x 190mm x 40mm in size, with a curved lower edge surrounding

the space for the internal trackball.  Thanks go to Colin Redmond for

designing and moulding the case.

Summary

The Netslate prototype hardware contains a powerful CPU, memory,

display and user interface hardware and a high speed communications port.

The board has sufficiently low power consumption to run from a battery

pack, and is packaged in a self-contained unit.

While the Netslate is hardly ready for mass production, it is a useful and

functional prototype platform on which to build software.  In the next

chapter, we describe the software that runs on the Netslate board and

demonstrates its capabilities.
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Chapter 4 - Software Development

The previous chapter covered the hardware design and development of the

Netslate prototype board.  Of course, this hardware is useless without

software.  This chapter traces the stages of software development and

testing, which progressed alongside the hardware development.  We first

look at the compiler and software development tools used, and then detail

the library of functions for the Netslate board (nslib ) and the

demonstration programs that were developed.

Software Development Environment

Throughout this project, the GNU [11] software development tools have

been used.  These consist of a set of binary utilities including an assembler,

linker, librarian and disassembler which make up the "binutils" package,

and a C and C++ compiler in the "gcc" package.  Both packages may be

configured as cross development tools with the ARM as the target machine,

and like all GNU software are freely available.

The development platform used was a Linux PC with a ROM emulator

attached. The author ported the ROM emulator download program to Linux

for this purpose.  Linux provides a stable Unix environment in which to

develop code and run the GNU cross development tools.

A third package, the "semilib" library [12] from ARM Ltd, is needed to

build gcc with an ARM target.  This library provides a very limited libc

implementation with routines for such operations as division and modulus

which are needed by the compiler but are not part of the ARM instruction

set.  The semilib package is also freely available.

The semilib library is intended for use with semi-hosted ARM development

boards such as the PID board from VLSI, which connect to a host with
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filesystem and I/O support via a debug monitor.  The Netslate board does

not have a debug monitor or hosted debugging facilities, so these I/O

functions were not used.  The startfile crt0.o  in semilib is designed for

loading programs using the debug monitor, so this was also unusable.

First Test Programs

When building a computer for the first time, it is very important to work by

increments and test thoroughly at every stage.  The first sign of life from the

Netslate board came when only the CPU and ROM were installed.  A single

instruction program consisting of:

here: b here

which branches to itself in an infinite loop was loaded into the ROM

emulator and power was applied.  On coming out of reset the ARM7500

commences executing code from address zero, which is the start of the

ROM address space.  Logic probes on the address lines confirmed that all

fetches were occurring within the first four words of memory.  This is

because the ARM core employs a three stage pipeline with two prefetches

after a branch, so the first three words of memory were being fetched

continually.

From this point, a number of test programs of increasing complexity were

written in ARM assembly language to test the memory and the general

purpose I/O port IOP[7:0].  This port is eight open drain pins which may be

individually pulled low by programming the IOLINES register with a

control byte.  When floating, the input levels on the port may be read back

from the same register.  This is a very useful way to get initial feedback

from a board with otherwise no I/O implemented, as it requires no extra

hardware except a logic probe on the relevant pins.

When DRAM was added to the board, it was tested by a number of

programs which would write various patterns of words into the memory and

read them back, signalling via the IOP[7:0] lines if a mismatch was found.



33

This allowed ROM and DRAM to be fully tested and debugged before any

other I/O capabilities were added.

The nslib Library

As hardware was added to the Netslate board, functions to test and utilise

the new modules were written and added to the body of Netslate code.  The

end result of all of the software modules that were produced is a library of

functions called nslib .  The nslib  package has been made freely

available for other developers using the ARM7500 in the hope that it will be

found useful.

In this section, the modules which make up nslib  are described, followed

by a number of test programs which demonstrate the library and the

Netslate board's capabilities.  Appendix B lists nslib.h , the header file

which describes all of the externally visible features of the library.

The Exception Vector Table

Exceptions are events which require special handling by the processor, and

cause execution to jump to an exception handler address for this purpose.

Exceptions which may arise in the ARM7500 are caused by reset, hardware

interrupts (IRQ and FIQ), software interrupts (SWI) and when the processor

traps an undefined instruction or an illegal memory access.

The first eight words in memory make up the exception vector table.  The

first of these vectors is for reset, which is why execution starts at address

zero upon being reset.  Each vector consists of one instruction which should

branch to the appropriate exception handler.

All Netslate programs are linked to start at address zero, so that the

exception vector table may be part of the program.  The table is written in

eight lines of assembly code in crt0.S , which produces the start file

crt0.o .  This start file is automatically linked to the start of every

program, so it is guaranteed to start at address zero in the ROM.  At the time
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of writing, all exceptions except resets and IRQ interrupts cause execution

to halt.

Initialisation and Memory Map

A number of initialisations of the Netslate hardware and specifically the

ARM7500 need to be performed immediately after coming out of reset. The

reset exception handler is written in assembly so that it can set up the

memory map and stacks required before any C functions can be called.

The CPU is configured for 32-bit program and data address spaces and set

to supervisor mode.  Netslate programs run in supervisor mode as opposed

to user mode so that they may freely enable and disable interrupts.  Stacks

are set up for supervisor and interrupt mode programs at this point.

The other two main actions that are performed on reset are to copy the

program from the ROM into the DRAM, and map the DRAM into the

address space previously occupied by the ROM at address zero.  It is always

necessary to copy the initialised data section (data) into DRAM, so that its

contents may be altered  by the program.  In the case of the Netslate board,

copying the program code itself speeds execution, as fetches from DRAM

require less cycles than ROM.  Remapping the DRAM to commence at

address zero means that the exception vector table on the front of the

program points to the exception handlers in DRAM.
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The ARM7500

contains a Memory

Management Unit

(MMU) which

handles address

translation and

permission checking,

as well as controlling

the cache and write

buffer.  A 16Kbyte

block of memory

called the level one

translation table describes mappings of one megabyte sections of logical

address space to sections of physical memory or I/O address space.  Figure

9 shows the logical and physical memory maps used by the Netslate board.

The MMU is also capable of much finer division of memory mappings

using pages which range in size from 4kB to 64kB.  In this case, the entry

for an address range in the level one table points to a level two table or page

table which gives the information on individual pages.  Currently the

Netslate software does not make use of pages as these are most useful in a

protected memory environment.

Once the level one translation table and associated registers have been set

up, the MMU can be enabled bringing the memory mappings into effect. At

this point the cache and write buffer are also enabled, the program is

running from DRAM, and control passes to the main()  function.

Interrupt Handling

Apart from reset, the only exception which is implemented on the Netslate

is the IRQ interrupt exception.  The ARM7500 has almost thirty different

IRQ interrupt sources, some internal and some external.  Internal interrupt

Fig. 9 - The Netslate logical-to-physical memory

mappings
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sources are generated by events within the chip, such as when one of the

internal timers reaches its terminal count or when the PS/2 mouse interface

receives a complete byte.  External interrupts are generated by either levels

or transitions on external interrupt pins, such as INT2 used by the 16C550

serial port.

Several sets of 8-bit memory mapped registers in the ARM7500 provide

masks and status information on all of the interrupt sources. If a particular

interrupt event occurs when the corresponding mask bit for that interrupt

source is set, an IRQ exception will occur and the corresponding status bit

will read as one.

When an interrupt occurs, the IRQ exception trap saves the register set onto

the IRQ stack and passes control to an interrupt dispatch routine

(IrqDispatch ).  The interrupt dispatcher examines the interrupt request

registers (which are the status registers bitwise-ANDed with the mask

registers) from highest to lowest priority, until a set bit is found. A table of

interrupt vectors supplies the address of an Interrupt Service Routine (ISR)

for that particular source, which is called to handle the interrupt.  Upon

return of the ISR, the register set from the interrupted program is restored,

interrupts are reenabled and control returns to the interrupted address.

In order to keep the interrupt response time as short as possible, a priority

resolution table is used to determine the highest priority bit that is set in a

non-zero request register.  When indexed with a byte mask which has at

least one bit set, the table gives the bit position of the least significant bit

that is set.  This lookup process is a constant time operation which is faster

than looping and shifting through the bits in each byte until a non-zero bit is

found.

The current interrupt handling scheme does not allow nested interrupts. It is

possible to implement a prioritised nested interrupt scheme on the
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ARM7500 by masking off all lower priority interrupt sources and enabling

interrupts before passing control to the ISR.  Of course, these interrupts

must be masked back on again on return.  Nested interrupt schemes are

useful when ISRs have significant execution times and high priority

interrupts require low latency times.

Mouse Module

The mouse module is a good example of how interrupts are handled with

nslib .  This module provides an interrupt driven software interface to the

PS/2 style serial mouse interface.

This module contains two functions, one to initialise the mouse and the

module (MouseInit ), and another which is the ISR (MouseIsr ).  A point

to note is that before installing and enabling the ISR any pending interrupt

from that source is cleared.

Each time the PS/2 mouse interface receives a complete byte from the

attached peripheral, a mouse receive interrupt occurs and the interrupt

dispatcher calls the MouseIsr  routine.  This routine maintains a static

variable which counts the bytes received in each message from the mouse.

When a complete message is received, the mouse state variables are

updated.

The position and button state of the mouse is maintained in global variables

which may be polled by the main program.  In a multitasking environment

this could be replaced by a queue or some other event structure which is

posted to by the service routine, as will be discussed later in the section on

multitasking kernels.

Serial Communications Module

The serial communications module provides a number of functions which

allow bytes to be transmitted and received over the RS232 serial link. This

module is similar to the mouse module in that it contains an initialisation
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function and an ISR function.  The module buffers all data in both

directions and provides functions to send bytes, receive bytes and check if

any bytes are ready in the receive buffer.

The SerialSend  and SerialRecv  functions which are called by the

main program to send and receive bytes will block until space becomes

available in the transmit buffer or a byte is available in the receive buffer

respectively.  In a multitasking environment the transmit and receive buffers

would have associated event control blocks which would allow other tasks

to continue while the caller is blocked waiting for space or data.

There are established and reliable ways of handling serial port interrupts.

The serial port ISR performs the following sequence of actions:

1. Mask off and acknowledge the interrupt source

2. Repeatedly read the Interrupt Identification Register (IIR) and service the

indicated interrupt cause until bit zero is set, signifying no more interrupt

causes

3. Unmask the interrupt source

It is important to mask off transmit interrupts at the UART immediately the

transmit buffer becomes empty.  Otherwise a spurious interrupt will arise

after the last byte has been transmitted.  Correspondingly, transmit

interrupts must be reenabled when data is added to a previously empty

transmit buffer.

The serial module also implements RTS/CTS hardware flow control on

receive.  This is used to signal to the remote host whether the Netslate is

able to accept data.  When the receive buffer is almost full, the RTS line is

lowered to signal that the remote host should stop transmitting.  When the

main program accepts enough data to make space in the receive buffer, RTS

is raised again.
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Video Display Module

The Netslate board supports graphical output to a number of display

devices.  The video module in nslib  provides routines for controlling and

displaying a variety of graphics primitives on SVGA monitors, and the

monochrome Hitachi and colour Sanyo LCD panels.

These primitives include pixels, lines, filled and outline triangles rectangles

and circles, characters, text and shaped mouse pointers. The video modes

currently supported are: CRT monitor at 640x480x8bit colour with palette,

Hitachi LCD panel at 480x128x4bit greyscale and Sanyo LCD panel at

640x480x12bit colour.

All of the video functions are accessed through a global record

corresponding to the current video mode.  This allows modes to be changed

by changing the pointer to the configuration record.  This is most useful in a

system which allows video modes to be changed on the fly, which is

envisaged for the Netslate.  The library header nslib.h  provides a set of

macros with which to call all of the video functions through the

configuration record.

New video modes can be added to the library by modifying the drawing and

initialisation routines and creating a new configuration record. Each mode

also has an associated assembly language file which allocates space for the

display buffer.  Assembly is used so that the buffer is guaranteed to be

quad-word aligned, a requirement of the video DMA channel.

One of the ARM7500's internal interrupt sources is a video flyback interrupt

which is triggered on every vertical retrace of the display. The video module

contains an ISR which is hooked to this interrupt. It maintains a count of the

number of retraces since the main program last synchronised to the display.
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Programs that need to perform page flipping for smooth animated graphics

can call the synchronise function (VidSync ) which waits for the next

retrace and then returns the number of frames that have elapsed, allowing

the rate of motion to be independent of the frame rate.  This technique is

used in the Space demo program described later in this chapter.

Heap Management

The nslib  package includes very simple implementations of the malloc

and free  routines used to dynamically allocate and deallocate blocks of

memory on the heap.  These routines maintain a doubly linked list of word-

aligned blocks.  The nslib  malloc  and free  are non-reentrant and so

are not suitable for use in a multitasking environment.  The heap is used by

the Server demo program described below.

Server Demonstration Program

A number of demonstration programs have been developed during the

Netslate project, each using the routines in the nslib  library.  The first and

most important of these is the Server program.

The Server program is a display server for a host program running on the

Linux host.  The host program sends drawing requests over the RS232 serial

link to the Netslate board, which the Server program interprets and displays.

This allows a limited subset of the X-windows drawing capabilities to be

mirrored on the Netslate display.

The host program is a modified Tcl/Tk interpreter from Sun Labs [13].

Tcl/Tk is a scripting language with a graphics extension, which runs on

Unix workstations with X-windows terminals.  The Tcl/Tk interpreter is

freely available in source form.  The modifications made involved

redirecting all of the calls to Xlib display functions through "hook"

functions.  These hook functions then call the real Xlib function as well as

making up a request record and sending it over the serial link.
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Surfit! [14] is a freely available Web browser written entirely in Tcl/Tk. It

handles standard HTML as well as a number of extensions now in common

use.  When Surfit! is run using the modified Tcl/Tk interpreter, the Web

browser appears both on the X-windows terminal and on the Netslate

display.

Some visible differences between the two are due to the Netslate server only

having one fixed width font and incompletely implementing clipping of

drawing requests.  However the colour map is true to the original and

Surfit!'s GIF image handling is supported, loading images in raw form over

the serial link.

Once an image is loaded it may be redrawn from the copy stored on the

heap by the Netslate server, making scrolling and redrawing much faster.

The Netslate server also dynamically allocates space for X-windows

"pixmaps" which are used to draw complete widgets before copying them to

the visible screen.

While the Server program and its associated serial protocol implements only

a very limited subset of the X-windows protocol, it is sufficient to

demonstrate the display capabilities of the Netslate hardware.  This program

was the key demonstration of the Netslate as a Web browser at the end of

the project.

Space Demonstration Program

The Server program demonstrates that the Netslate has sufficient display

and communications capability to run as a terminal for a Web browser on a

host machine.  Unfortunately the performance of the Server demonstration

is limited by the speed of the host machine and the serial link.

The ultimate goal for the Netslate is to run all of the Web browser software

locally without relying on a remote host.  The Space demonstration program
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is aimed at showing that the Netslate hardware has sufficient processing

power to perform this task standalone.

Three dimensional graphics is often used as a demonstration of system

performance for its crowd appeal and high "wow" factor. The Space

program draws a smoothly rotating scene in 3D space made up of points,

lines and filled triangles and circles.  The user can move the viewpoint

around the scene with the trackball and zoom in and out with the buttons.

The Space program implements matrix transformations, vector operations

and trigonometry functions using fixed point arithmetic.  The sine and

cosine functions use linear interpolation on a compact lookup table, which

provides more than enough accuracy for graphics purposes.  No floating

point maths is used as the ARM7500 does not implement a floating point

coprocessor and the Netslate environment does not provide software

emulation.  In any case, integer arithmetic is sufficient and probably faster

than hardware floating point.

The program uses page flipping to draw to a back page and then switch the

display to that page to eliminate flickering.  The video module's

synchronisation function is used to ensure page flipping occurs during

retrace, and also locks the rate of movement and rotation.  If three frames

have elapsed since the last page flip, the movement of the scene is updated

three times.

Depending on the proximity of the point of view to objects in the scene, the

frame rate achieved varies around 20 to 30 frames per second.  This could

be improved by further optimisation of the video display routines. This

frame rate is comparable to if not better than that achieved by many

commercial games for the PC.
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The main motivation for demonstrating the performance of the Netslate

hardware is to show that it is capable of dealing with the increasing

complexity of graphics and multimedia content which is appearing on the

Web.

Tasks Demonstration Program

Multitasking and multithreading are a basic necessity of operating systems

with graphics and networking capabilities.  Separate tasks for dealing with

the network, redrawing areas of the display, accepting user feedback etc

make programming for interactive systems far more intuitive and straight

forward.

uC/OS [15][16] is a real time multitasking kernel that is freely available in

source form.  It has been ported to a number of platforms including the

ARM600 PID development board from VLSI.  This port is written with the

Norcroft ARM C compiler and binary utilities in mind.

The author modified the ARM600 version of uC/OS for the ARM7500 and

the GNU development tools.  There are significant differences in the

assembler syntaxes of the ARM and GNU assemblers.  The interrupt

handling also needed modification to work with nslib  and the ARM7500's

interrupt mask and status registers, as the PID board uses an external

interrupt controller.

While the modified kernel runs reliably with a single interrupt source, it

usually crashes when two interrupts arise simultaneously.  It is unclear

whether the cause of the problem is a bug carried over from the PID version

or whether it has been introduced by the Netslate code.  The problem has

been isolated to context switching on returning from a nested interrupt.

The Tasks demonstration program runs three independent tasks which each

periodically display filled rectangles, triangles or circles.  A mouse cursor is
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also displayed.  Moving the mouse rapidly increases the number of

interrupts and the chance of two occurring simultaneously, encouraging the

program to crash.  Upon crashing the program halts with an aborted data

access exception, suggesting that code or data is corrupted.

Menu Program

The Menu program is a small front-end to the other demonstration programs

which allows them all to be linked into the one ROM image.  On resetting

the Netslate, the user is presented with a mouse driven menu of the

programs available.  This program was used for the demonstration session

of the project to eliminate the ROM emulator pod.  A pair of EPROMs were

programmed with all three demonstration programs which could be

individually selected upon resetting.

Summary

The nslib  library provides a starting point for further development of the

Netslate platform.  All of the modules of the Netslate hardware have been

tested during the development of the library, and a number of demonstration

programs apply the library to show the modules working together.

The Server program provides proof-of-concept of the handheld Web

browser and demonstrates the Netslate communications capabilities. The

Space program demonstrates the performance of the Netslate hardware, and

the Tasks program provides a rudimentary demonstration of multitasking.

The GNU compiler and binary utilities provide a stable environment for

further software development with the Netslate.  The final chapter of this

report discusses directions for building operating system and applications

software on this platform.
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Chapter 5 - Future Directions

Chapters 1 and 2 introduced the concept and importance of a handheld Web

browser and examined a number of related products and developing

technologies in the field.  Chapters 3 and 4 detailed the hardware design and

software development of the Netslate prototype.  In this final chapter we

look to the future of this fast growing field and explore directions for further

development of the Netslate project.

As this project has mainly been concerned with the hardware and low level

support software of the Netslate prototype, the most immediate concern in

taking the project further must be to develop an operating system and

substantial applications software.

The author hopes that this chapter will provide direction to students

continuing with Netslate-related projects in coming years.

Operating System

An operating system for the Netslate should consist of a multitasking kernel

with sufficient Inter-Process Communication (IPC) and a set of modules for

networking, filesystem support and display management.

The Applications Programming Interface (API) between the operating

system and the application program(s) needs to be clearly defined. If the

operating system and applications are loaded separately, it is likely that all

system calls will be via the software interrupt (SWI) instruction, with

specific SWI numbers corresponding to particular system calls.

The simpler option is to compile the operating system and the application

into one program and make function calls as normal.  This affords no

protection mechanisms for the operating system code, but fully protected
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operating systems are only needed when running untrusted applications

programs.  When the two are compiled into one, the API is defined by a

single header file describing a layer of function calls.

Multitasking and IPC

As mentioned in the previous chapter, multitasking is almost a prerequisite

of an operating system in interactive and realtime systems. It allows

separate tasks to handle various parts of an interactive system concurrently,

while providing communication between processes.  IPC is made up of a

number of communication primitives within the kernel. The uC/OS kernel

implements counting semaphores, mailboxes and message queues.

One example of the use of IPC primitives is in the mouse interface.

Currently a program using nslib  needs to poll global variables to check

for a button press.  In a multitasking system this could be replaced by a

semaphore posted to by the mouse ISR.  The mouse handler task would

pend or wait on this semaphore, removing it from the list of tasks that are

ready to run, and the kernel would schedule some other task.  When a

mouse event is received, the task would again be ready to run and would be

scheduled.

In a multitasking system it is often the case that all tasks are waiting for

some event and nothing is ready to run.  As the kernel always needs to have

a task to switch to in this case, an "idle" task of the lowest possible priority

is used to occupy the CPU until the next event.  The idle task in the Tasks

program is an infinite loop which places the ARM7500 in SUSPEND mode,

gating off the clock to the core until the next interrupt.  This practice saves

power consumption when the program is idle while still allowing DMA to

continue.

TCP/IP Networking

The ultimate goal of the Netslate is to connect directly to the Internet

through some service provider using the networking protocols already in
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common use.  This means that it will need to implement a basic TCP/IP

protocol stack with support for either the SLIP or PPP serial protocols.

The absolute bare minimum set of protocols needed to connect to the

Internet, contact a remote host and download a Web page is SLIP [17], IP

[18], TCP [19] and HTTP.  SLIP (Serial Line Internet Protocol)

encapsulates packets for transmission over the serial link.  IP (Internet

Protocol) is responsible for the routing of individual packets, which is fairly

trivial to implement on a SLIP-connected client.

TCP (Transmission Control Protocol) is the most involved of these

protocols and provides the abstraction of a continuous stream of data to the

application layer.  It is responsible for retransmission of lost packets, end to

end flow control, packet ordering and so on. HTTP (HyperText Transfer

Protocol) is the protocol used to talk to Web document servers and is trivial

to implement.

PPP (Point-to-Point Protocol) [20] is similar in function to SLIP but is by

far the preferred protocol for performance, robustness and flexibility.  It is,

however, far more complex to implement than SLIP.  A complete

implementation of SLIP is given in C code in the RFC document that

describes the protocol.

All of these protocols (and in fact all open protocols used on the Internet)

are documented in freely available documents called RFCs (Request For

Comments).  A list of relevant RFCs and sites where they can be obtained is

given in the reference section.  Consult Stevens [21] for the Bible of

network programming.

The TCP protocol makes extensive use of timers to determine when packets

that have not been acknowledged should be retransmitted, when the



48

connection to the remote host has been lost etc.  The uC/OS kernel provides

a system timer which can be used for this purpose.

All pends on event control structures such as semaphores can be made to

timeout after a certain period of time, which lends itself to the construction

of a retransmission queue.  Message queues would also make a suitable

means for applications programs to send and receive data to and from the

TCP manager task.

Filesystem Support

Some degree of filesystem support will be necessary for a standalone Web

browser, to supply temporary space for cached documents, image files etc.

A RAM-disk style filesystem should be straight forward to implement as no

complex directory structures or protection mechanisms are needed.

While space for files could be dynamically allocated on the heap, this could

lead to problems with fragmentation of memory.  This occurs when the heap

grows as blocks are allocated and then some blocks are deallocated.  This

results in the free heap space being distributed in fragments of memory,

limiting the largest contiguous block that can be allocated.

A better implementation would use a single large block of memory divided

into sectors analogous to those on magnetic disks.  Files then become

distributed over chains of sectors without fragmenting the heap. Example

implementations of simple filesystems using sectors (RAM or otherwise)

can often be found in embedded software archives [22].

The TCP networking protocol discussed earlier requires some amount of

buffer storage.  Performance of network transfers can be improved to a

point by offering larger "window" sizes to the remote host, requiring larger

buffers.  One technique to simplify code and make better use of memory
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might be to implement the network buffers as sectors allocated in the

filesystem.

A simple RAM filesystem is sufficient for temporary storage purposes, but

bookmark files and user preferences require some non-volatile storage.

While these could be stored on the network, it could be useful for the

Netslate to have a small amount of battery backed or flash memory in which

to store information such as a dialup or login script with which to contact

the service provider.  This may or may not be needed depending on the

means of connection.  The Netslate prototype board has surface mount pads

brought out to vias for a 32Kbyte SRAM chip if this is later required.

Windowing System

The last prerequisite module for our operating system is a windowing

system.  This provides the foundation for the Graphical User Interface

(GUI) provided by the applications software.

The X windows protocol [23][24][25] is very big and very ugly, qualities

that are shared by the code that implements it.  While familiarity with X is

useful to understand the concepts and techniques involved, it should not be

taken as an indication of the complexity required of a basic windowing

system.

Start with a clear idea of just what constructs are required of the windowing

system at the application level.  The system should be made up of three

fundamental constructs: windows, pixmaps and drawing primitives.

A window is a rectangular area with a size and a position within a parent

window.  The root window is the special case window which occupies all of

the display and has no parent.  The window hierarchy is stored in a tree

structure.  A window is only ever visible within the bounds of its parent

window.  Each widget in an application's main window will have its own
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window, and many widgets will have sub-windows.  Each widget window is

a child of the main window which is a child of the root window.

A pixmap is similar to a window but is stored off screen and is not part of

the window hierarchy.  Pixmaps are used as temporary scratch space for

drawing widgets before copying them to visible windows. Pixmaps and

windows are sometimes generalised and termed drawables.

Drawing primitives make up the rectangles, lines, strings, images, copy

operations etc that can be drawn to a window or a pixmap.  All drawing to a

pixmap must be clipped to the edges of the pixmap.  All drawing to a

window must be clipped to whatever portions of the window are actually

visible and unobscured by other windows.  A window can only be obscured

by the immediate children of that window's parent or by anything obscuring

the parent.  A generalised set of operations on regions made up of rectangles

may be useful for clipping.

Whenever a previously exposed area becomes visible, that area is said to be

damaged as it needs to be redrawn with the contents of the exposed

windows.  Dragging a window across the screen accumulates damage to the

windows below it.  Redrawing is delayed until the CPU is not busy drawing

the moving window as this task is more important to responsive user

interaction.

The exposed area is accumulated in a damage region structure.  When the

window system task is scheduled (presumably because the application is not

busy moving windows etc) it calls callback functions on each damaged

window.  The application's callback functions in turn call drawing

primitives to redraw themselves.  The area of the each window that receives

an expose callback is then removed from the damaged region until no

damage remains.
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Floating Point Arithmetic Support

It is inevitable that some applications will require floating point arithmetic.

Both the Tcl/Tk and Java interpreters use some amount of floating point.

While floating point arithmetic instructions are part of the ARM instruction

set, on the ARM7500 they trigger an undefined instruction exception.  It is

possible to emulate the instructions in an exception handler by tracing back

to the unrecognised instruction.  This also requires the operating system to

maintain a set of coprocessor registers.  What is worse, these registers must

be swapped on every context switch, which changes the shape of the saved

stack frame of the kernel.

The simpler approach to this problem seems to be to avoid floating point

instructions by letting the C compiler generate integer code to emulate them.

Recent versions of gcc include code generation to emulate floating point

instructions, but some amount of work is required to build this into the

compiler.  The author has not yet ventured down either of the floating point

emulation paths.

Application Programs

Unless the developer plans to write a Tcl/Tk or Java interpreter or even a

Web browser from scratch, it is likely that building the application will be a

matter of porting code from some other platform such as Unix.  This is the

case with the Tcl/Tk interpreter which was modified for this project.  The

author investigated porting the entire interpreter to the Netslate platform

before deciding that much more operating system support was needed than

could be implemented in the time available.

Once the basics of a useable operating system are in place, porting larger

applications such as Tcl/Tk become possible.  Any given application will

require a certain amount of library support which may not have already

been implemented for the kernel.  In the case of Tcl/Tk, a fair number of

string operations such as searching and formatting are required.  All of the
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library functions used for evaluating floating point expressions will also

need implementations, but most of these can probably remain as stubs to get

the interpreter running initially.

Obviously it will save unnecessary effort if the developer is familiar with

just what library and operating system support are required by the

application in question.  Try linking the application on a Unix platform

without any libraries (not even libc), the linker errors will give an indication

of what functions are required.  Remember that this list is not

comprehensive as some library functions call more library functions.  In any

case do not feel that you need to implement a complete POSIX environment

before you can get the basics of your application working.

Customisations and Extensions

Once the application has been ported and is running reliably, it is time to

consider changes to the application to tailor it to the Netslate hardware.  The

most obvious lacking of the Netslate compared to a workstation is that of a

keyboard.  One solution to this is to implement a virtual keyboard which

appears on the display when a text entry field has the keyboard focus.

Because browsing the Web is mostly point-and-click, slow text entry of this

type is sufficient for the occasional form or keyword search entry.

Further extensions requiring complex algorithms, intensive processing and

major changes to the applications software include handwriting and speech

recognition.  Of course, extensions to the Netslate hardware would also be

needed to use these input methods.  These are both techniques that we will

certainly see more of in future devices and the Netslate prototype is

certainly capable of supporting extensions of this kind.

Further Hardware Development

While the Netslate prototype hardware is reasonably complete for the

purposes of developing software, a certain amount of work would be

needed to bring the Netslate from a prototype to a product ready for
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production.  Mainly this would involve complimenting the terminal

hardware with the necessary wireless communications circuitry and

generally finishing the product.  A number of other improvements and

developments are indications of how this type of device will take shape in

the coming years.

Wireless Networking

This project has considered the matter of how the Netslate makes a wireless

connection to the Internet to be somebody else's problem. Of course this

attitude does not make for a complete product and this is one of the major

barriers to be overcome before a Netslate product is marketable.

The two major technologies in wireless communications are InfraRed (IR)

and cellular radio.  Each has its pros and cons.

Cellular radio is the same technology that is used currently by mobile

telephones.  Its immediate advantage is that many areas are already covered

by cellular service, so devices with inbuilt radio modems can be used in

these areas.  This is the case with the Motorola Marco and Envoy products

discussed in chapter 2.

The disadvantages of cellular radio are limited bandwidth and governmental

regulation concerns.  The radio frequency spectrum is under heavy demand

from a many different groups of users, and so regulatory bodies are unlikely

to give up great swathes of the band for personal wireless digital

communications any time soon. Range and power requirements of cellular

radio devices is also of concern.

InfraRed technology has until recently been the domain of line-of-sight

remote controls for consumer electronics products.  A number of research

efforts are underway to develop very high bandwidth diffuse InfraRed
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communication links.  Diffuse links do not require line-of-sight, instead

using reflections from the walls and ceiling.

IR has the distinct advantage that its use is not controlled by regulatory

bodies.  Since IR does not travel through walls, it cannot interfere with other

IR systems in neighbouring rooms or buildings.  However this does imply

that the cell size for an IR network is one room.  The cost of IR technology

and the cabling that runs to transceivers in each room will need to drop

substantially before it comes into common usage.

One way of deferring the choice of communications technology is to equip

the Netslate with an interface such as a PCMCIA slot [26], which can accept

a variety of network interfaces, expansion cards etc. Of course this requires

appropriate card and socket driver software to be built into the operating

system, a not insignificant task. The ARM7500 is compatible with a number

of "single chip" solutions to PCMCIA socket interfacing.

Input Devices

Natural methods of interaction go a long way to making a user feel in

control of and comfortable with a system.  As mentioned earlier in this

chapter, handwriting and speech recognition are currently the two big

pushes in this direction for handheld devices.  Both of these would be a

major undertaking as an extension to the Netslate prototype, but both are

within the realms of possibility.

Even if handwriting recognition was not implemented, a touch screen for

the Netslate would be a great improvement over the trackball. The current

Netslate prototype would ideally have had a touch screen if this was

possible within the budget of the project.  It was decided that a large colour

display and trackball was better than a small monochrome touch screen.
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Touch screens generally produce a number of resistive variables to the

system which provide the position and pressure of the touch. The resistive

inputs on the ARM7500 are sufficient for joystick inputs but do not have

the sample rate and accuracy required by a touch screen interface.  This

implies that an external Analog-to-Digital Conversion (ADC) interface

would be required.

The extra hardware needed to support speech input is also an ADC,

however a higher sample rate is required to preserve enough information for

speech recognition.  A DMA channel is ideal, but the ARM7500 does not

provide any spare general purpose channels.  An alternative is to make use

of the fast FIQ interrupt inputs to grab each sample from a port.  Interrupt

traffic could be reduced by buffering a number of samples outside the CPU,

perhaps implemented in an EPLD similar to the colour LCD interface.

Future VLSI Technologies

One promise of current trends in Very Large Scale Integration (VLSI)

manufacturing technology is to integrate greater numbers of functions into

single packages.  One inevitability is that we will soon see a package with a

processor and sufficient DRAM for a useful system on a single die.

Every year transistors get pushed closer together on the silicon.  Clock

speeds rise, power consumption falls.  The amount of functionality on one

die increases, and package counts and prices drop.

Levels of integration are reaching the point where it should be possible to

include an ARM CPU on a 32Mbit (4Mbyte) DRAM die. DRAM

manufacturing processes require special steps not necessary for CPUs, but

this does not preclude fabricating a CPU on a DRAM process.

The number of pins on processor packages has been steadily increasing for

years, as data and address buses get wider. One significant result of placing
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processor and memory on the same silicon is that the pin count will actually

drop.  Sixteen data lines is sufficient I/O bus width for most applications,

and the address bus can be reduced to a few low order register select bits

and a number of internally decoded chip select lines.

As more and more transistors can fit on one die, we can expect to see

package counts drop even further as the CPU absorbs DRAM, even more

I/O functionality, even FPGA style programmable logic. At the same time

performance and efficiency will continue to grow, pointing to an exciting

future for true single-chip handheld devices.

Lessons Learned

Above all, the Netslate project has been an incredible learning experience

for the author.  The following are a few lessons learned during the project

that have very broad application.

1. Never assume anything

Almost all of the problems encountered during the project were due to

incorrect assumptions.  Thoroughness in design is everything.  One example

of a mistake that could have been avoided occurred in the interrupt handling

code for the ARM7500.  The IRQ request registers are each 8 bits wide but

occupy word addresses.  After spending many hours searching for the

source of a spurious interrupt, it was found that the higher order bits in the

word do not always read back zero, as had previously been assumed.

2. Test, don't guess

The above problem was not found by the hours of fiddling with code to see

what the results would be.  It was found by inserting a debug statement

which displayed the word value of the IRQ request register.  Good

debugging tools and techniques are invaluable.

3. Document debugging
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A problem with the Netslate startup code which was fixed early in the

project reared its head once again much later.  By this time it was forgotten

what the original source of the problem was and how it had been fixed the

first time.  Good revision control practices could have prevented the

problem from reappearing, and proper documentation of problems and fixes

throughout the project could have saved the time spent debugging it again.

Summary

As demonstrated by the programs described in the previous chapter, the

Netslate platform is capable of high speed communications, graphical user

interfaces, gaming-quality animations and multitasking.  This sets the scene

for a compact operating system with communicating processes managing

TCP/IP networking, a volatile filesystem, a windowing GUI and all the

applications support needed to run a standalone Web browser.

The author challenges the reader to take up the Netslate where this project

leaves off, and develop the operating system and applications software that

will turn the prototype into a complete handheld Web browser system.
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Conclusions

The Netslate project has achieved the short term goals stated in the first

chapter of this report.  These were to design and construct hardware for a

prototype handheld Web browser and to develop a low level support library

for testing, demonstration and further development of  the prototype.

By combining architectural influences from personal computers, embedded

systems and ubiquitous computing projects, the Netslate design integrates

processing, communications and user interface hardware into a self-

contained, low power, low cost system.

The ARM7500 CPU integrates a large part of the functionality required by

the

prototype into a single device.  By adding the necessary support hardware to

a flexible development board, the Netslate represents a platform that is

ready to support high level software development.

The GNU software development tools and the nslib  support library

written specifically for the Netslate make up the basic for further software

development on this platform.  A number of demonstration programs have

proven that the Netslate prototype hardware and the nslib  library is a

functional combination.

Much work is still to be undertaken before the Netslate is a fully-functional

standalone handheld Web browser.  The author hopes that future thesis

students will take on these challenges and learn as much as was gained from

this project in the process.

The last fifteen years have seen incredible change in the computing

industry.  Now that the era of the PC is coming to an end and the Network

Computer is coming to the fore, technologies like the handheld Web
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browser will no doubt play their part in bringing global information access

to the masses.
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Appendix A - lcd.tdf colour LCD interface

The following is a listing of lcd.tdf , a Altera text design file written in

AHDL, which describes the function of the EPLD device making up the

colour LCD interface.

-- lcd.tdf
--
-- Copyright (c) 1996 Ben Williamson.
-- All rights reserved.
--
-- This file is an Altera Text Design File, written in AHDL.  It
-- describes an EPLD device for latching LCD display data from the
-- ARM7500 and presenting it to a colour LCD panel.  The ARM gives
-- 4 bits of greyscaled LCD data on every ECLK.  The colour LCD
-- requires 16 bits of data on every CL2 clock period.  Three levels
-- of 4 bit DFFs store four ECLK's worth of data, while a 2 bit
-- counter produces CL2 and latches the 16 bit word every four
ECLKs.

SUBDESIGN lcd
(

eclk : INPUT; -- clock from the ARM7500
ed[7..4] : INPUT; -- data from the ARM7500
hsync : INPUT; -- pulses high after each line
vsync : INPUT; -- pulses high after each frame
ndisp : INPUT; -- an active low enable signal

ud[7..0] : OUTPUT; -- drives even-numbered pixels
ld[7..0] : OUTPUT; -- drives odd-numbered pixels
ncl2 : OUTPUT; -- drives CL2 (buffered externally)
nm : OUTPUT; -- drives M (buffered externally)
disp : OUTPUT; -- drives DISP to enable display

)
VARIABLE

shift[15..4] : DFF; -- three levels of 4-bit registers
data[15..0] : DFFE; -- stores the output word
count[1..0] : TFF; -- counts through four ECLKs
toggle : TFF; -- produces the M signal
EN : SOFT; -- a name for the data latch enable
NHSYNC : SOFT; -- a name for NOT hsync

BEGIN
-- ndisp is driven from an active low ARM output.  This could
-- have been buffered elsewhere, but what the hell
disp = !ndisp;

-- Aliasing !hsync to NHSYNC makes an Altera error go away
NHSYNC = !hsync;

-- Everything is synchronous with the falling edge of eclk
-- Th e counter gets reset after each raster.  It drives
-- the fast LCD clock, CL2.
count[1..0].clk = !eclk;
count[1..0].clrn = NHSYNC;
count[0].t = VCC;
count[1].t = count[0].q;
ncl2 = count[1].q;

-- The LCD requires an M input which is high for a frame, low
-- for a frame.  This flip-flop toggles on every vsync pulse.
-- If this signal stops toggling while DISP is enabled, the
-- display will die very quickly.
toggle.clk = NHSYNC;
toggle.t = vsync;
nm = toggle.q;
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-- Shift in the data from ED[7 :4] - this is the main function
-- of the EPLD.
shift[].clk = !eclk;
shift[ 7.. 4].d = ed[7.. 4];
shift[11.. 8].d = shift[ 7.. 4].q;
shift[15..12].d = shift[11.. 8].q;

-- When the counter reaches its terminal count, latch the data
-- onto the output pins.  This extra level of latching

wouldn't
-- be neccessary if the LCD had faster setup/hold times.
EN = count[0].q AND count[1].q;
data[15..0].ena = EN;
data[15..0].clk = !eclk;
data[15..4].d = shift[15..4].q;
data[3..0].d = ed[7..4];

-- Renam e the output pins to match the naming conventions of 
-- the LCD
ud[7] = data[15].q;
ud[6] = data[13].q;
ud[5] = data[11].q;
ud[4] = data[9].q;
ud[3] = data[7].q;
ud[2] = data[5].q;
ud[1] = data[3].q;
ud[0] = data[1].q;

ld[7] = data[14].q;
ld[6] = data[12].q;
ld[5] = data[10].q;
ld[4] = data[8].q;
ld[3] = data[6].q;
ld[2] = data[4].q;
ld[1] = data[2].q;
ld[0] = data[0].q;

END;
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Appendix B - nslib.h library header

The following is a listing of nslib.h , the header file declaring all

externally visible features of the nslib  library.

/*
 * nslib.h --
 *
 * Declarations of public and private features of nslib,
 * a library for programs running on the ARM7500-based
 * Netslate Development Board.
 *
 * Copyright (c) 1996 Ben Williamson.
 * All rights reserved.
 *
 * This file is part of nslib, a library used by programs
 * running on the Netslate Development Board.
 *
 * This software is released under the GNU Public License.
 * See the file COPYING for more information.
 */

#ifndef _NSLIB_H
#define _NSLIB_H

#include <ioregs.h>
#include <vidregs.h>

/* constants */

#ifndef EXTERN
# ifdef __cplusplus
#  define EXTERN extern "C"
# else
#  define EXTERN extern
# endif
#endif

#define NULL 0

#define IRQ_MAX_NUM 37

#define IRQ_INT2 0 /* INT2 rising edge */
#define IRQ_NINT1 2 /* nINT1 falling edge */
#define IRQ_FLYBACK 3 /* video frame flyback */
#define IRQ_POR 4 /* Power On Reset */
#define IRQ_TIMER0 5 /* 2MHz timer 0 */
#define IRQ_TIMER1 6 /* 2MHz timer 1 */
#define IRQ_ALWAYS 7 /* always active */

#define IRQ_NINT8 8 /* nINT8 active low */
#define IRQ_INT7 9 /* INT7 active high */
#define IRQ_NINT6 10 /* nINT6 active low */
#define IRQ_INT5 11 /* INT5 active high */
#define IRQ_NINT4 12 /* nINT4 active low */
#define IRQ_NINT3 13 /* nINT3 active low */
#define IRQ_KEYBT 14 /* keyboard transmit */
#define IRQ_KEYBR 15 /* keyboard receive */

#define IRQ_IOP0 16 /* IOP[0] active low */
#define IRQ_IOP1 17 /* IOP[1] active low */
#define IRQ_IOP2 18 /* IOP[2] active low */
#define IRQ_IOP3 19 /* IOP[3] active low */
#define IRQ_IOP4 20 /* IOP[4] active low */
#define IRQ_IOP5 21 /* IOP[5] active low */
#define IRQ_IOP6 22 /* IOP[6] active low */
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#define IRQ_IOP7 23 /* IOP[7] active low */

#define IRQ_MSER 24 /* mouse receive */
#define IRQ_MSET 25 /* mouse transmit */
#define IRQ_ATOD 26 /* A-to-D comparators */
#define IRQ_NEVENT1 27 /* nEVENT1 active low */
#define IRQ_NEVENT2 28 /* nEVENT2 active low */

#define IRQ_SOUND 36 /* sound DMA */

#define HIBYTE(x) ((unsigned char)((x) >> 8))
#define LOBYTE(x) ((unsigned char)(x))

#define Random(n) (random() % (n))
#define Suspend() {SUSMODE = 0x01;}

#define _bottomOfHeapLogical _end

/*
 * Macros to access video dimensions and call video functions
 * through the configuration struct:
 */

#define vidMaxX (vidConfigPtr->maxX)
#define vidMaxY (vidConfigPtr->maxY)
#define vidMaxCol (vidConfigPtr->maxCol)
#define vidBufSize (vidConfigPtr->bufSize)
#define VidStart() (vidConfigPtr->startProc)()
#define VidClear() (vidConfigPtr->clearProc)()
#define VidDrawPage(p) (vidConfigPtr->drawPageProc)(p)
#define VidDisplayPage(p) (vidConfigPtr->displayPageProc)(p)
#define VidFrameIsr (vidConfigPtr->frameIsrProc)
#define VidSync() (vidConfigPtr->syncProc)()
#define VidShapeCursor(p) (vidConfigPtr->shapeCursorProc) \

((p))
#define VidMoveCursor(x, y) (vidConfigPtr->moveCursorProc) \

((x), (y))
#define VidGetCol(r, g, b) (vidConfigPtr->getColProc) \

((r), (g), (b))
#define VidSetRGB(c, r, g, b) (vidConfigPtr->setRGBProc) \

((c), (r), (g), (b))
#define VidPixel(x, y, c) (vidConfigPtr->pixelProc) \

((x), (y), (c))
#define VidHLine(x1, x2, y, c) (vidConfigPtr->hlineProc) \

((x1), (x2), (y), (c))
#define VidVLine(x, y1, y2, c) (vidConfigPtr->vlineProc) \

((x), (y1), (y2), (c))
#define VidLine(x1, y1, x2, y2, c) (vidConfigPtr->lineProc) \

((x1), (y1), (x2), (y2), (c))
#define VidRect(x1, y1, x2, y2, c) (vidConfigPtr->rectProc) \

((x1), (y1), (x2), (y2), (c))
#define VidTriangle(x1,y1,x2,y2,x3,y3,c) \

(vidConfigPtr->triangleProc) \
((x1), (y1), (x2), (y2), \
(x3), (y3), (c))

#define VidCircle(x, y, r, c) (vidConfigPtr->circleProc) \
((x), (y), (r), (c))

#define VidFillRect(x1,y1,x2,y2,c) (vidConfigPtr->fillRectProc) \
((x1), (y1), (x2), (y2), (c))

#define VidFillTriangle(x1,y1,x2,y2,x3,y3,c) \
(vidConfigPtr->fillTriangleProc) \

((x1), (y1), (x2), (y2), \
(x3), (y3), (c))

#define VidFillCircle(x, y, r, c) (vidConfigPtr-
>fillCircleProc) \

((x), (y), (r), (c))

#define VidChar(c, x, y, f, b) (vidConfigPtr->charProc) \
((c), (x), (y), (f), (b))

#define VidText(s, x, y, f, b) (vidConfigPtr->textProc) \
((s), (x), (y), (f), (b))
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typedef void (VidStartProc)(void);
typedef void (VidClearProc)(void);
typedef void (VidDrawPageProc)(int page);
typedef void (VidDisplayPageProc)(int page);
typedef void (VidFrameIsrProc)(void);
typedef int  (VidSyncProc)(void);
typedef void (VidShapeCursorProc)(char *xpmPtr[]);
typedef void (VidMoveCursorProc)(int x, int y);
typedef int  (VidGetColProc)(int red, int green, int blue);
typedef void (VidSetRGBProc)(int col, int red, int green, int blue);
typedef void (VidPixelProc)(int x, int y, int col);
typedef void (VidHLineProc)(int x1, int x2, int y, int col);
typedef void (VidVLineProc)(int x, int y1, int y2, int col);
typedef void (VidLineProc)(int x1, int y1, int x2, int y2, int col);
typedef void (VidRectProc)(int x1, int y1, int x2, int y2, int col);
typedef void (VidTriangleProc)(int x1, int y1, int x2, int y2,

int x3, int y3, int col);
typedef void (VidCircleProc)(int cx, int cy, int r, int col);
typedef void (VidFillRectProc)(int x1, int y1, int x2, int y2,

int col);
typedef void (VidFillTriangleProc)(int x1, int y1, int x2, int y2,

int x3, int y3, int col);
typedef void (VidFillCircleProc)(int cx, int cy, int r, int col);
typedef void (VidCharProc)(unsigned char ch, int x, int y,

int fgcol, int bgcol);
typedef void (VidTextProc)(char *s, int x, int y,

int fgcol, int bgcol);

typedef struct {
int maxX;
int maxY;
int maxCol;
int bufSize;
VidStartProc *startProc;
VidClearProc *clearProc;
VidDrawPageProc *drawPageProc;
VidDisplayPageProc *displayPageProc;
VidFrameIsrProc *frameIsrProc;
VidSyncProc *syncProc;
VidShapeCursorProc *shapeCursorProc;
VidMoveCursorProc *moveCursorProc;
VidGetColProc *getColProc;
VidSetRGBProc *setRGBProc;
VidPixelProc *pixelProc;
VidHLineProc *hlineProc;
VidVLineProc *vlineProc;
VidLineProc *lin eProc;
VidRectProc *rectProc;
VidTriangleProc *triangleProc;
VidCircleProc *circleProc;
VidFillRectProc *fillRectProc;
VidFillTriangleProc *fillTriangleProc;
VidFillCircleProc *fillCircleProc;
VidCharProc *charProc;
VidTextProc *textProc;

} VidConfig;

/* data structures */

typedef unsigned int uint;
typedef unsigned long int size_t;
typedef volatile unsigned int ureg;
typedef unsigned char byte;

/*
 * Pointer to function with no arguments returning int
 */
typedef int (*PFI)(void);
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/*
 * Pointer to function with no arguments returning void
 */
typedef void (*PFV)(void);

/*
 * Pointer to function with a pointer argument returning void
 */
typedef void (*PTV)(void *);

/*
 * A block on the heap
 */

typedef struct _HeapBlock {
uint length; /* bytes including header */
struct _HeapBlock *next; /* next block in heap */
struct _HeapBlock *prev; /* previous block in heap */

} _HeapBlock;

/*
 * Declarations of memory map constants from memmap.S:
 */

EXTERN int _topOfStackPhysical;
EXTERN int _l1TableStartPhysical;
EXTERN int _bottomOfHeapLogical;
EXTERN int _topOfHeapLogical;
EXTERN int _bottomOfStackLogical;
EXTERN int _topOfStackLogical;
EXTERN int _l1TableStartLogical;
EXTERN int _topOfMemoryLogical;
EXTERN int _l1TableStart;
EXTERN int _romStartPhysical;
EXTERN int _memStartPhysical;
EXTERN int _ram0StartPhysical;
EXTERN int _ram1StartPhysical;
EXTERN int _ram2StartPhysical;
EXTERN int _ram3StartPhysical;
EXTERN int _pcioStartPhysical;
EXTERN int _armioStartPhysical;
EXTERN int _sioStar tPhysical;
EXTERN int _vidStartPhysical;
EXTERN int _memStartLogical;
EXTERN int _ram0StartLogical;
EXTERN int _ram1StartLogical;
EXTERN int _ram2StartLogical;
EXTERN int _ram3StartLogical;
EXTERN int _pcioStartLogical;
EXTERN int _armioStartLogical;
EXTERN int _sioStartLogical;
EXTERN int _vidStartLogical;
EXTERN int _romStartLogical;

EXTERN _HeapBlock *_heapStart;
EXTERN _HeapBlock *_heapLimit;

/*
 * Video buffers, cursors and fonts:
 */
EXTERN char _vid1Display0Logical;
EXTERN char _vid1Display1Logical;
EXTERN char _vid1Display0Physical;
EXTERN char _vid1Display1Physical;

EXTERN char _vid2Display0Logical;
EXTERN char _vid2Display1Logical;
EXTERN char _vid2Display0Physical;
EXTERN char _vid2Display1Physical;
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EXTERN char _vidCursorLogical;
EXTERN char _vidCursorPhysical;

EXTERN char *cursorPixmap[];
EXTERN unsigned char fixedFont[];

/*
 * Other global variables and constants
 */
EXTERN VidConfig *vidConfigPtr;

EXTERN VidConfig vid1Config;
EXTERN VidConfig vid2Config;

EXTERN volatile int mouseX, mouseY, mouseB;

EXTERN uint const mapTbl[];
EXTERN uint const unmapTbl[];

/* procedures */

/*
 * From debug/
 */

EXTERN uint _getcpsr(void);
EXTERN void _setcpsr(uint cpsr);
EXTERN uint _getsp(void);
EXTERN void halt(void);
EXTERN char * number(unsigned int n);
EXTERN void print(const char *s);
EXTERN void putchar(char c);

/*
 * From intrpt/
 */

EXTERN void IntEnable(void);
EXTERN void IntDisable(void);
EXTERN void IrqInit(void);
EXTERN void IrqEnable(int irqNum);
EXTERN void IrqDisable(int irqNum);
EXTERN PFV IrqInstall(int irqNum, PFV isrProc);
EXTERN void IrqDispatch(void);

/*
 * From mem/
 */

EXTERN void _MmuInitTable(void);
EXTERN void HeapInit(void);
EXTERN void * malloc(size_t size);
EXTERN void free(void *ptr);

/*
 * From misc/
 */

EXTERN void _main(void);
EXTERN uint random(void);

/*
 * From mouse/
 */

EXTERN void MouseInit(void);
EXTERN void MouseIsr(void);

/*
 * From serial/
 */
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EXTERN void SerialInit(int baud);
EXTERN void SerialSend(char ch);
EXTERN char  SerialRecv(void);
EXTERN int SerialReady(void);
EXTERN void SerialIsr(void);

/*
 * From string/
 */

EXTERN void _clear(void *start, int len);
EXTERN void bzero(void *s, int n);

/*
 * From video/
 */

EXTERN void VidInit(VidConfig *configPtr);

#endif /* _NSLIB_H */


